Validation and Trustworthiness of Multiscale Models of Cardiac Electrophysiology

نویسندگان

  • Pras Pathmanathan
  • Richard A. Gray
چکیده

Computational models of cardiac electrophysiology have a long history in basic science applications and device design and evaluation, but have significant potential for clinical applications in all areas of cardiovascular medicine, including functional imaging and mapping, drug safety evaluation, disease diagnosis, patient selection, and therapy optimisation or personalisation. For all stakeholders to be confident in model-based clinical decisions, cardiac electrophysiological (CEP) models must be demonstrated to be trustworthy and reliable. Credibility, that is, the belief in the predictive capability, of a computational model is primarily established by performing validation, in which model predictions are compared to experimental or clinical data. However, there are numerous challenges to performing validation for highly complex multi-scale physiological models such as CEP models. As a result, credibility of CEP model predictions is usually founded upon a wide range of distinct factors, including various types of validation results, underlying theory, evidence supporting model assumptions, evidence from model calibration, all at a variety of scales from ion channel to cell to organ. Consequently, it is often unclear, or a matter for debate, the extent to which a CEP model can be trusted for a given application. The aim of this article is to clarify potential rationale for the trustworthiness of CEP models by reviewing evidence that has been (or could be) presented to support their credibility. We specifically address the complexity and multi-scale nature of CEP models which makes traditional model evaluation difficult. In addition, we make explicit some of the credibility justification that we believe is implicitly embedded in the CEP modeling literature. Overall, we provide a fresh perspective to CEP model credibility, and build a depiction and categorisation of the wide-ranging body of credibility evidence for CEP models. This paper also represents a step toward the extension of model evaluation methodologies that are currently being developed by the medical device community, to physiological models.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bridging experiments, models and simulations: an integrative approach to validation in computational cardiac electrophysiology.

Computational models in physiology often integrate functional and structural information from a large range of spatiotemporal scales from the ionic to the whole organ level. Their sophistication raises both expectations and skepticism concerning how computational methods can improve our understanding of living organisms and also how they can reduce, replace, and refine animal experiments. A fun...

متن کامل

Integrative Systems Models of Cardiac Excitation–Contraction Coupling Alternans and Arrhythmias: From Cells to the Heart Computational Models Reduce Complexity and Accelerate Insight Into Cardiac Signaling Networks Whole Heart Modeling: Applications to Cardiac Electrophysiology and Electromechanics

Excitation–contraction coupling in the cardiac myocyte is mediated by a number of highly integrated mechanisms of intracellular Ca transport. The complexity and integrative nature of heart cell electrophysiology and Ca cycling has led to an evolution of computational models that have played a crucial role in shaping our understanding of heart function. An important emerging theme in systems bio...

متن کامل

Electromechanical models of the ventricles.

Computational modeling has traditionally played an important role in dissecting the mechanisms for cardiac dysfunction. Ventricular electromechanical models, likely the most sophisticated virtual organs to date, integrate detailed information across the spatial scales of cardiac electrophysiology and mechanics and are capable of capturing the emergent behavior and the interaction between electr...

متن کامل

Evaluation of Patient's Dose and Estimate of Cancer Risk in Electrophysiology Studies and Ablation in Cath Lab Center of Afshar Hospital, Yazd, Iran

Introduction: Today electrophysiology studies and ablation have been developed due to increasing arrhythmias disorder of heart. In these diagnostic – treatments methods, the use of fluoroscopy can be causes patient radiation dose, therefore evaluation of patient's absorbed dose is necessary to protection of the radiation. The aim of this study was to evaluate the absorbed dose in patients under...

متن کامل

Integrated Heart – Coupling multiscale and multiphysics models for the simulation of the cardiac function

Mathematical modelling of the human heart and its function can expand our understanding of various cardiac diseases, which remain the most common cause of death in the developed world. Like other physiological systems, the heart can be understood as a complex multiscale system involving interacting phenomena at the molecular, cellular, tissue, and organ levels. This article addresses the numeri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2018